Linear Gewichtete Gleitende Durchschnitt Berechnung


Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall ist, desto näher sind die gleitenden Mittelwerte auf die tatsächlichen Datenpunkte. Linearly Weighted Moving Average DEFINITION des linear gewichteten Moving Average Eine Art von gleitendem Durchschnitt, der eine höhere Gewichtung der aktuellen Preisdaten zuweist als der gemeinsame einfache gleitende Durchschnitt. Dieser Durchschnitt wird berechnet, indem jeder der Schlusskurse über einen bestimmten Zeitraum genommen und mit einer bestimmten Position in der Datenreihe multipliziert wird. Sobald die Lage der Zeiträume berücksichtigt wurde, werden sie zusammengefasst und durch die Summe der Anzahl der Zeiträume dividiert. BREAKING DOWN Linear Weighted Moving Average Zum Beispiel wird in einem 15-tägigen linear gewichteten gleitenden Durchschnitt der heutige Schlusskurs mit 15, gestern um 14 multipliziert und so weiter, bis der Tag 1 im Periodenbereich erreicht ist. Diese Ergebnisse werden dann addiert und durch die Summe der Multiplizierer (15 14 13 3 2 1 120) dividiert. Der linear gewichtete gleitende Durchschnitt war eine der ersten Antworten, um den jüngsten Daten eine größere Bedeutung zu verleihen. Die Beliebtheit dieses gleitenden Durchschnitts wurde durch den exponentiellen gleitenden Durchschnitt verringert. Aber trotzdem erweist es sich immer noch sehr nützlich. Was ist der Unterschied zwischen gleitendem Durchschnitt und gewichtetem gleitendem Durchschnitt Ein 5-Perioden-Gleitender Durchschnitt, basierend auf den oben genannten Preisen, würde nach folgender Formel berechnet: Basierend auf der obigen Gleichung Der durchschnittliche Preis über den oben genannten Zeitraum betrug 90,66. Mit bewegten Durchschnitten ist eine effektive Methode zur Beseitigung starker Preisschwankungen. Die Schlüsselbegrenzung ist, dass Datenpunkte von älteren Daten nicht anders als Datenpunkte am Anfang des Datensatzes gewichtet werden. Hier kommen gewichtete Bewegungsdurchschnitte ins Spiel. Gewichtete Durchschnitte weisen den aktuellen Datenpunkten eine schwerere Gewichtung zu, da sie in der fernen Vergangenheit relevanter sind als Datenpunkte. Die Summe der Gewichtung sollte bis zu 1 (oder 100) addieren. Im Falle des einfachen gleitenden Durchschnitts sind die Gewichtungen gleichmäßig verteilt, weshalb sie in der obigen Tabelle nicht dargestellt sind. Schlusskurs von AAPL

Comments